Zametki na polyah (akor168) wrote,
Zametki na polyah
akor168

Matematicheskoe: Плотность линеной оболочки и характеризация полиномов

Любопытный результат из теории приближений (approximation theory).


Предположим, у нас есть пространство C(E) непрерывных функций на конечномерном евклидовом пространстве E=(R^n,(*,*)), взятое [C(E)] в топологии равномерной сходимости на компактах E.

И пусть у нас дана фиксированная непрерывная функция g(t):R--->R. Для произвольного элемента a пространства E и b - действительного числа, рассмотрим суперпозицию F(a,b,x)=g((a,x)+b):E--->R. А теперь возьмем линейную оболочку всех функций такого вида: K(g)=Span{F: F(x)=g((a,x)+b):E--->R}, и спросим себя - плотно ли множество K(g) в C(R) C(E).

Ответ: Да, если g(t) не является полиномом одной переменной! Если g(t) полином степени m, то и F(a,b,x) будет полиномом степени не выше m, и линейное замыкание, очевидно, неплотно; а вот обратная теорема крайне любопытна...

Между прочим, это красивая характеризация полиномов: хочешь доказать, что нечто не есть полином - рассмотри все суперпозиции с линейными функциями, и докажи, что линейная оболочка плотна, и наоборот - получил, что она не плотна, значит, имеем дело с полиномом.

Взято отсюда (Proposition 6.4), там еще пара результатов любопытных приводится.
Tags: math
Subscribe

  • 3-0 vs 42-0

    To put the magnitude of the U.S. defeat in context, losing 3-0 in soccer is the equivalent of losing 42-0 in football. Реально улыбнуло, поскольку…

  • Анекдоты: полная потеря смысла при пересказе

    Знаете, когда обсуждается сложность перевода с одного языка на другой, обычно рассказывается пример с круглым столом где каждый знает языки двух…

  • полезность регулярных проф-заметок

    Терри Тао пишет аж в 2013 году(в комментах) про полезность ведения ЖЖ собственного блога, в котором можно записывать прочитанные результаты,…

  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 4 comments